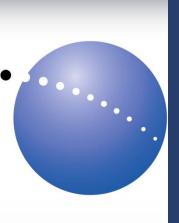


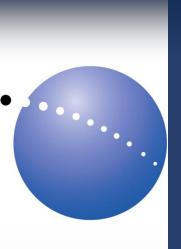
Satellite surveying reduces costs for oil exploration projects

Calgary Global Exploration Forum


PhotoSat - Over 600 global stereo satellite topographic mapping projects

Basic proposition

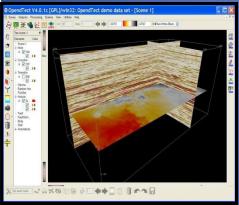
Uncertainty in topographic surveying causes delays at many phases of oil and gas projects. A study of a typical onshore project shows that higher accuracy surveying earlier in the project greatly reduces delays.


 Satellite surveying has improved to a level where it may be used as an alternative to ground surveying or airborne LiDAR.

Background on Satellite surveying

 Estimating the value of accurate surveying in an Oil and Gas project.

Real world examples

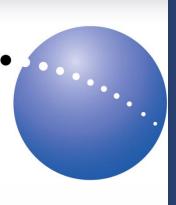


Satellite surveying technology background

Four key technical components enabling elevation mapping from space

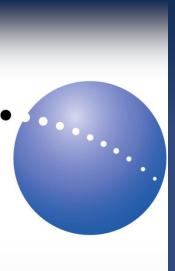
High resolution stereo satellite photos

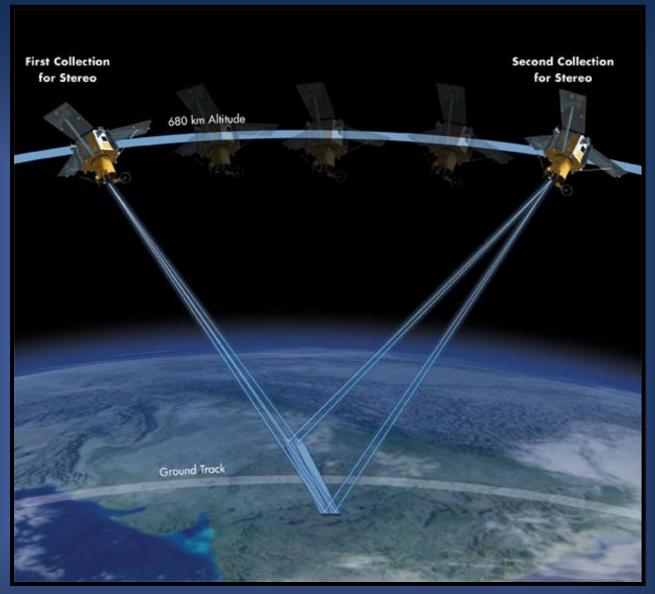
Adaptation of seismic processing systems

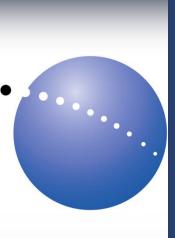


Graphics Processing Units (GPUs)

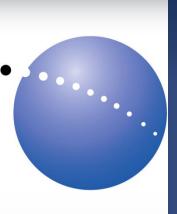
Oil Sands surveying


Characterize the satellites and optimize the process



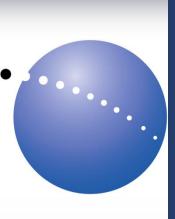

PhotoSat Algorithms

- Based on Seismic algorithms
 - Achieve 4x better accuracy when compared to conventional photogrammetric algorithms
- No image warping
 - Can assess accuracy compared to ground control
- Consistent throughout the area
- "Experience database" can be incorporated
 - Ft McMurray and other projects have allowed us to identify systematic errors.
- Ideal for GPU processing
 - 20x better throughput
 - Allows iteration during QC


Stereo satellite photos used to map topography

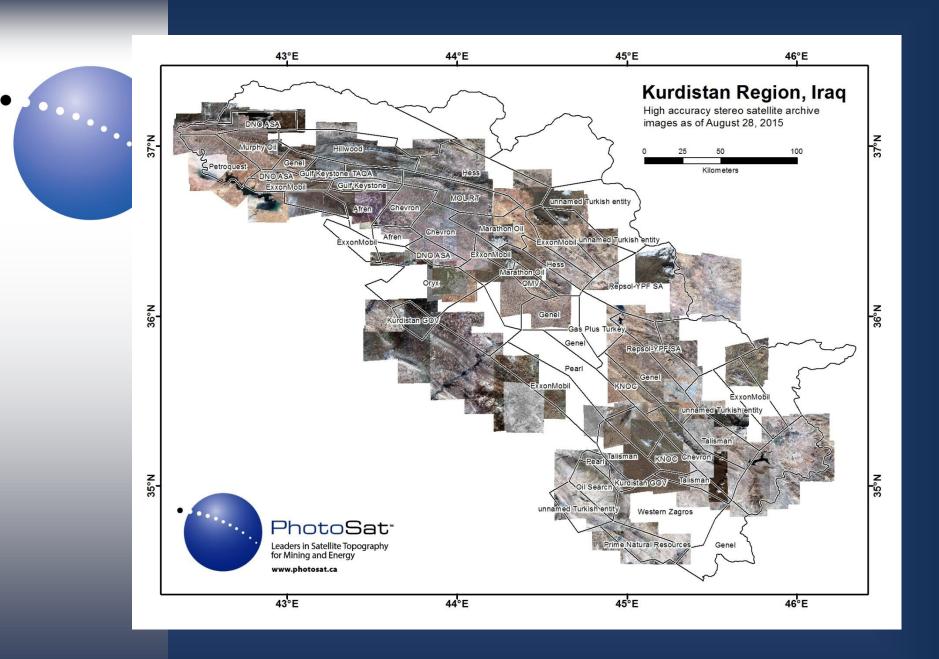
Really?

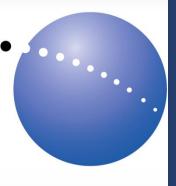
30 cm accuracy from space?


- Standards USGS
- Accuracy studies PhotoSat website
- Over 600 projects worldwide

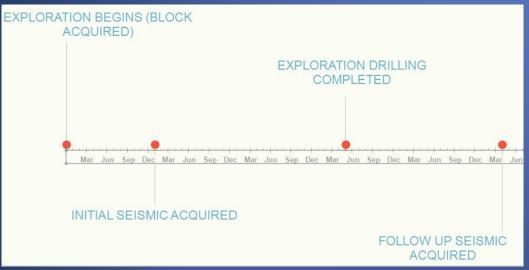
Quantifying survey costs and delays

Client Anecdotes

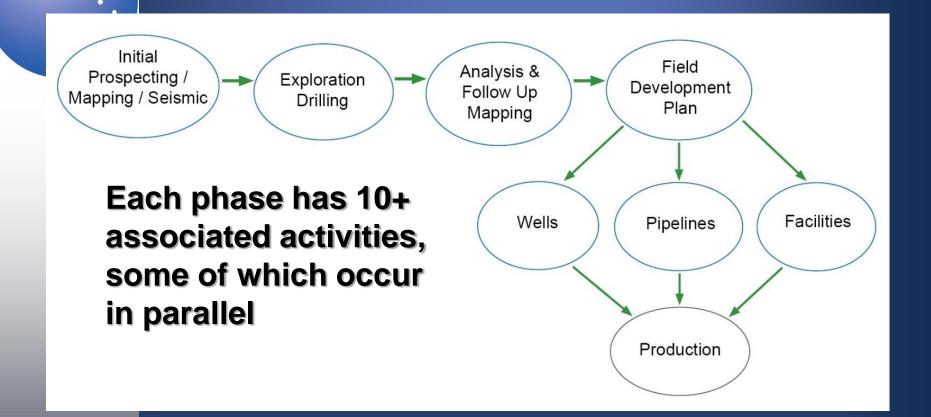

- "... reduced scouting costs by 80%"
- "... eliminated the need to wait for drill site surveying"
- "... saved 100's of thousands of \$ on dynamite...
- "... reduced contractor costs for road construction."
- "... eliminated delays and costs for Seismic planning"



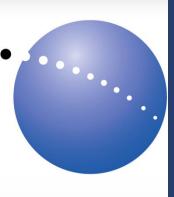
Assessing the cost savings and impact of Surveying delays


PhotoSat commissioned a critical path model of a typical Oil and Gas project with the objective of quantifying costs and delays caused by the "multiple survey" approach.

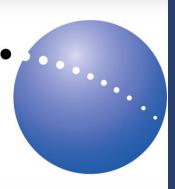
Calibrated using actual client data for projects in Kurdistan.

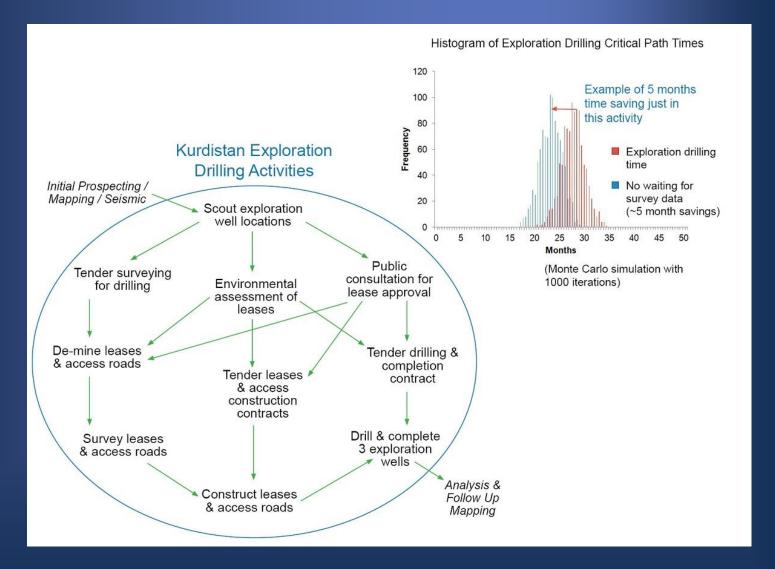


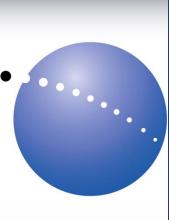
Timeline for Kurdistan onshore Oil and Gas project



Phases of an onshore Oil and Gas project

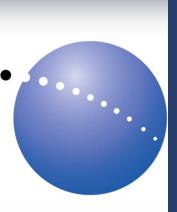



3	Format Painter B I U + II + O + A + II B II	非 字 国	Merge & Cent	ter - \$	- %	, .00 .00			nat as Per	riod Hea	d Pe	eriod Hi	ig F	roject	Head	=	Insert De	lete Fo	rmat	9	Clear				ind &
								ing * Tab	ole *									*						- 56	elect +
Clipbo	pard Font	Alignment		lu l	Numb	er 5					Styles						C	ells				Ed	iting		
A:	L ▼ (Program Evaluation and Re	view: Kurdis	tan Oil and	Gas Proj	ect																				
Α	В	С	D	Е	F	6	н		J	K	L	M	N	0	P	0	В	SIT	U	v. w.	X	YZ	AA A	BIAC	AD A
	-	Program E	valuation at	nd Revi	ew. Ku	rdistan Oi	l and Ga	s Projec	t																
		r regram E	raidadoir ai		= Mont		i dila od	011000									•								
				IIIIIe	- WOIIU	15																			
				Vicit		ment Step											Author	4 D	6	0 5	F .	c 11		I V	LM
		Minimum	Quality	without	Improve	ment Step											Activity	A D	L	, -	r ,	2 11	1 0	1 1	LM
			Improvemen	Ontimiet	Most	Pessimisti	Evnecte			Earliest	Earliest	Latest	Latest												
tivity	Description		t Precedent		Likely	c Time	d Time	Variance	Std. Dev	Start	Finish	Start	Finish	Slack	Mean	Std Dev	Mean	** **	## 1	.1 ##	** *		## #	# 4.3	3 ## #1
					Time					- Count		- Colon													
		01030000															Std Dev	ин ин		и ии		и ии	ии и:	# L/	
A	Acquire Block			1	2	4	2.167	0.25	0.50	0	2	0	2	0	2.2	0.5	1	2.8 2.3							8 1.9 2.3
В	Tender De-Mining and Surveying for Seismic Area	A		1	2	4	2.167	0.25	0.50	2	4	2	4	0	2.2	0.5	2	0.8 2.3							4 2.7 19
C	De-Mine Seismic Area	B		0.5	2	3	2.000	0.11	0.33	4	ь	4	6	0	2.0	0.4	3	1.6 2.2							
D E	Survey Seismic Area for Acquisition Tender Seismic Acquisition	A	D	2	4	2	1.083	0.06	0.25	2	6	ь .	- /	- 0	11	0.3	4	1.5 2.1							7 2.7 19
F	Acquire Seismic Acquisition Acquire Seismic Data	D.E	U	2	4	6	3.333	0.44	0.67	2	10	3 7	10	0	3.3	0.7	6	3.1 2.4							9 3.0 2.
G	Tender Seismic Processing	A.		1	3	6	3.167	0.44	0.83	2	5	7	10		3.2	0.7	7								3 19 17
Н	Process Seismic Plata	F.G	- F	1	2	2	2.000	0.03	0.03	10	12	10	12	0	2.0	0.3	8	2.7 1.7							7 15 21
1	Scout Exploration Well Location(s) (May Require De-Mining)	H		2	E .	7	5.000	0.11	0.67	12	17	12	17	0	5.0	0.7	0								4 2.3 13
ä	Conduct Environmental Assessment of Lease(s) (May Require De-Mining)	- 1		1	2	2	2.000	0.44	0.07	17	19	18	20	1	2.0	0.7	10								6 1.0 2.
K	Conduct Public Consultation for Lease Approval(s)	- 1		2	3	12	4.333	2.78	167	17	20	17	20	0	4.3	1.7	11					7 2.2			
L	Tender De-Mining and Surveying for Drilling	- i		1	2	4	2.167	0.25	0.50	17	19	18	20	1	2.2	0.5	12	2.2 12				22 23			3 13 23
м	De-Mine Lease(s) and Access Road(s)	J.K.L		- 1	2	3	2.000	0.11	0.33	20	22	20	22	0	2.0	0.3	13								2 14 2
N	Survey Lease(s) and Access Road(s)	M		0.5	1	2	1083	0.06	0.25	22	23	22	23	0	11	0.2	14	16 17				6 18			3 22 2
0	Tender Lease and Access Construction Contract(s)	JK	N	2	3	6	3.333	0.44	0.67	20	23	20	23	n	3.4	0.7	15	1.8 1.6	18 0	9 39	45 2	1 17	54 2	1 42	2 19 21
P	Construct Lease(s) and Access Road(s)	N.O		4	6	8	6.000	0.44	0.67	23	29	23	29	0	6.0	0.7	16	19 19	19 0	9 53	343	6 24	55 2	2 43	3 24 15
a	Tender Drilling & Completion Contract	JK	N	2	4	6	4.000	0.44	0.67	20	24	25	29	5	4.0	0.6	17	2.4 2.6	23 1	4 4.6	3.2 2	.3 1.3	5.0 1	7 4.1	1 2.3 2.
R	Drill & Complete 3 Exploration Wells	P,Q		6	9	12	9.000	1.00	1.00	29	38	29	38	0	9.0	1.0	18	1.9 2.2	25 1	2 3.4	4.0 3	4 1.6	5.9 2	3 4.2	2 2.6 18
S	Analyze Results and Plan Follow Up Seismic	R		4	8	12	8.000	1.78	1.33	38	46	38	46	0	8.0	1.4	19	1.9 2.6	24 1	2 3.6	4.1 2	.8 2.4	5.2 2	2 6.2	2 2.5 2.3
T	Tender De-Mining and Surveying for Seismic	S		1	2	4	2.167	0.25	0.50	46	48	46	48	0	2.2	0.5	20	2.8 1.9	2.4 1	4 4.7	3.8 2	.0 2.0	5.0 1/	6 3.6	3 2.1 2
U	De-Mine Seismic Area	T		2	3	4	3.000	0.11	0.33	48	51	48	51	0	3.0	0.3	21	1.7 2.5	2.0 0	9 5.2	3.4 4	.1 1.7	5.6 2	1 3.0	0 2.3 13
٧	Survey Seismic Area	U		1	2	4	2.167	0.25	0.50	51	53	51	53	0	2.1	0.5	22	2.1 2.0							4 2.1 2.1
W	Tender Seismic Data Acquisition	S	V	1	3	6	3.167	0.69	0.83	46	49	50	53	4	3.2	0.9	23	2.3 2.6							14 10
X	Acquire Seismic Data	V,W		2	4	8	4.333	1.00	1.00	53	57	53	57	0	4.3	1.0	24	2.7 2.0							
Y	Tender Seismic Processing	S	×	1	3	6	3.167	0.69	0.83	46	49	54	57	8	3.1	0.8	25								7 1.5 2.3
Z	Process Seismic Data	XY		2	3	4	3.000	0.11	0.33	57	60	57	60	0	3.0	0.3	26					3.6 2.1			2 2.2 18
AA	Analyze Results and Declare Commerciality	2		4	6	12	6.667	1.78	1.33	60	66	60	66	0	6.6	1.3	27	2.5 2.5							
AB	Scout Development Well and Facilty Locations (May Required De-Mining)	AA		3	6	12	6.500	2.25	1.50	66	72	66	72	0	6.6	1.5	28								2 2.5 2.1
AC	Public Consultation of Well and Facility Locations	AB		4	6	12	6.667	1.78	1.33	72	78	72	78	0	6.7	1.3	29	2.4 2.1				3.4 2.2			1 2.6 17
AD	Environmental Assessment of Well and Facility Locations	AB		2	3	4	3.000	0.11	0.33	72	75	75	78	3	3.0	0.3	30	2.6 1.8							2 1.7 2.7
AE	Field Development Plan Approval by KRG	AA,AC,AD		1	3	6	3.167	0.69	0.83	78	81	78	81	0	3.2	0.9	31	1.6 1.5						4 4.8	B 2.5 1.9
AF	Tender Contracts for De-Mining and Surveying for Development Drilling	AE AF		2	4	6	4.000	0.44	0.67	81	85	90	94	9	4.0	0.7	32					3.2 1.8		9 6.5	2.8 17
4G	De-Mine Drilling Leases and Access Roads			4	8	12	8.000	1.78	1.33	85	93	94	102	9	8.0	1.3	33	2.4 3.2							
AH	Survey Drilling Leases and Access Roads	AG	411	2	4	6	4.000	0.44	0.67	93	97	102	106	9	4.0	0.7	34								3 19 2
AJ	Tender Contracts for Lease and Access Construction	AE	AH	- 2	4	6	4.000	0.44	0.67	81	85 10F	102	106	21	4.0	0.7	35	3.4 2.5							4 2.0 2.1
AJ	Construct Drilling Leases and Access Roads Tender Contract for Drilling & Completion	AH,AI AF	AH	4	8	12	8.000	1.78	1.33	97	105 87	106	114	9 27	8.0	1.4	36 37	2.4 2.6							5 2.5 2.5
AK.	Tenger Contract for Drilling & Completion	AE	AH	- 4	6	8	6.000	U.44	0.67	- 81	87	108		21	6.0	0.7	37	2.3 2.1	25 0	.b 5.1	4.3 3	.b : 2.0	4.2 2	U 4.7	2.5 2.1


50+ activities identified, calibrated using projects in Kurdistan 1000 iteration Monte Carlo analysis to include effect of random errors. Does not include "catastrophic delays" caused by errors in survey data.

Calculates delays – does not quantify these into \$

Exploration drilling critical path

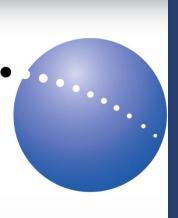


Examples of real world projects

- Well location auditing
 Pilot program using SADG Oil well heads
 Main project to locate 700+ wells in USA
- Reconciling multiple surveys
 - Oil major Kurdistan
- Drill collar mapping Mexico

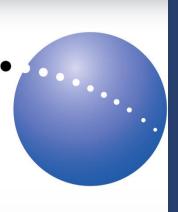
Case study – SAGD well site in Alberta

Pilot program for Producing SAGD well sites In Alberta Canada


Project started Jan 30th 2015

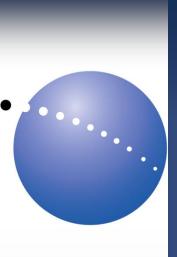
Satellite images acquired February 4th 2015

Processing complete February 6th 2015

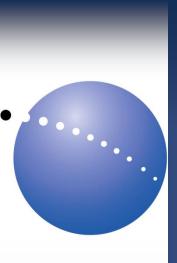


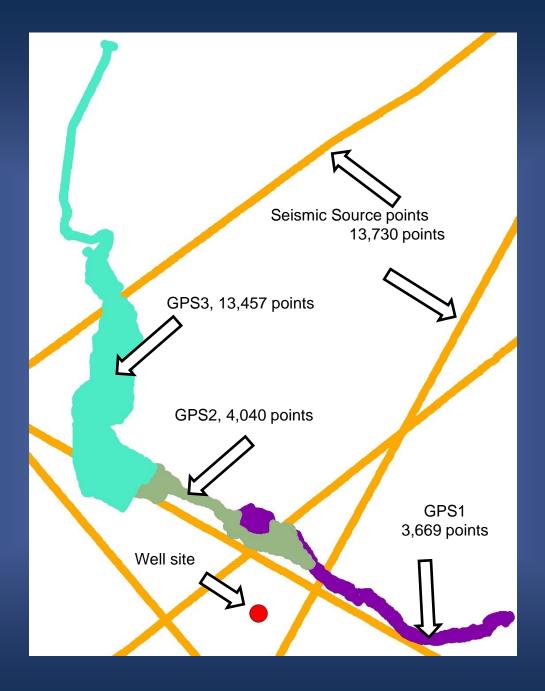
Pilot program deliverables

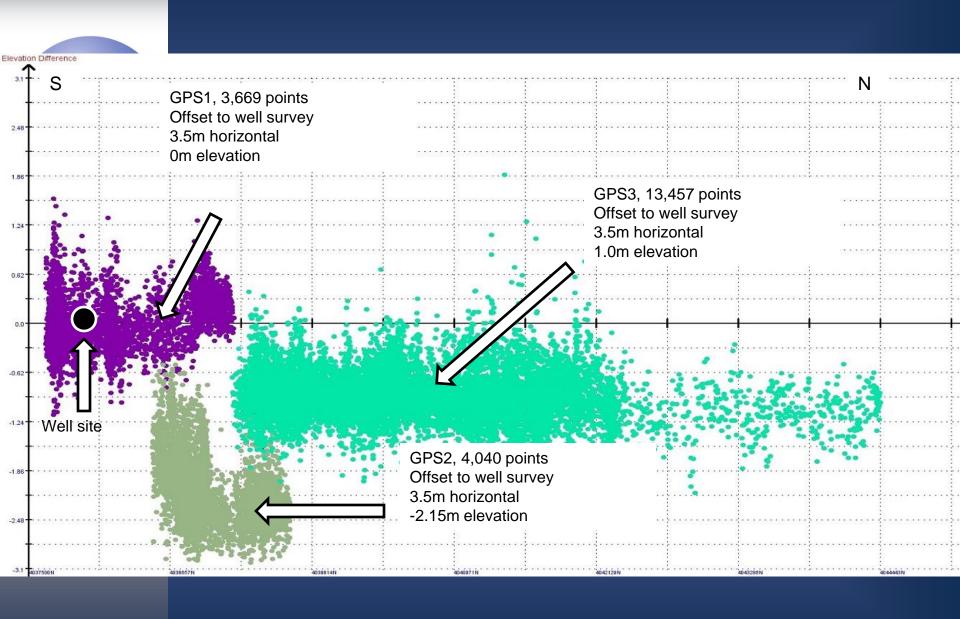
- X, Y, Z location of 70 well heads (excel + vectors)
- 1m elevation grid over well pad areas
- 50 cm contours
- 100 sq km of satellite image data + orthophoto.
- Colour elevation image
- \$12k USD (\$170 per well)

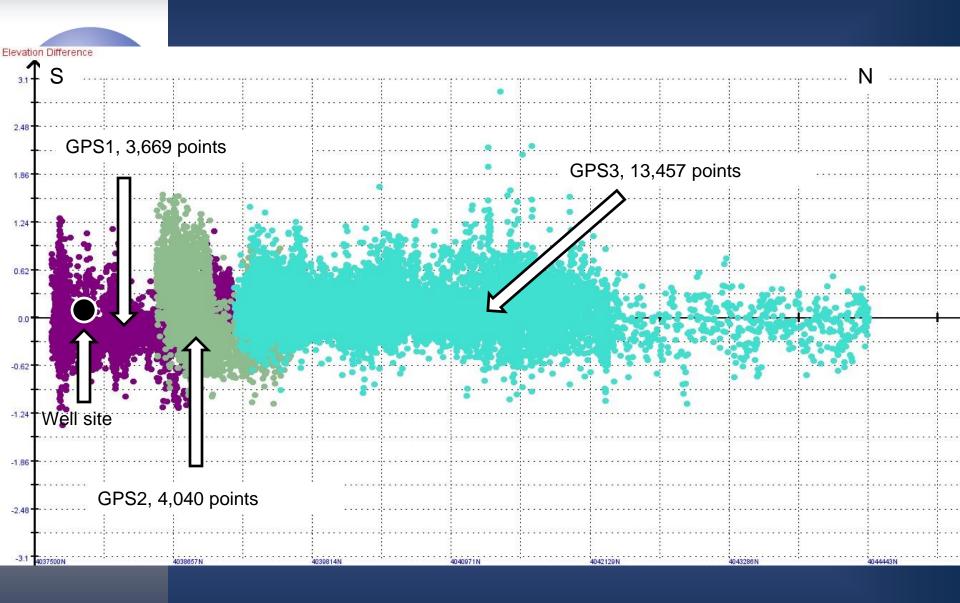

Well head locations were compared to Government of Alberta certified RTK surveying – RMSE <11cm.

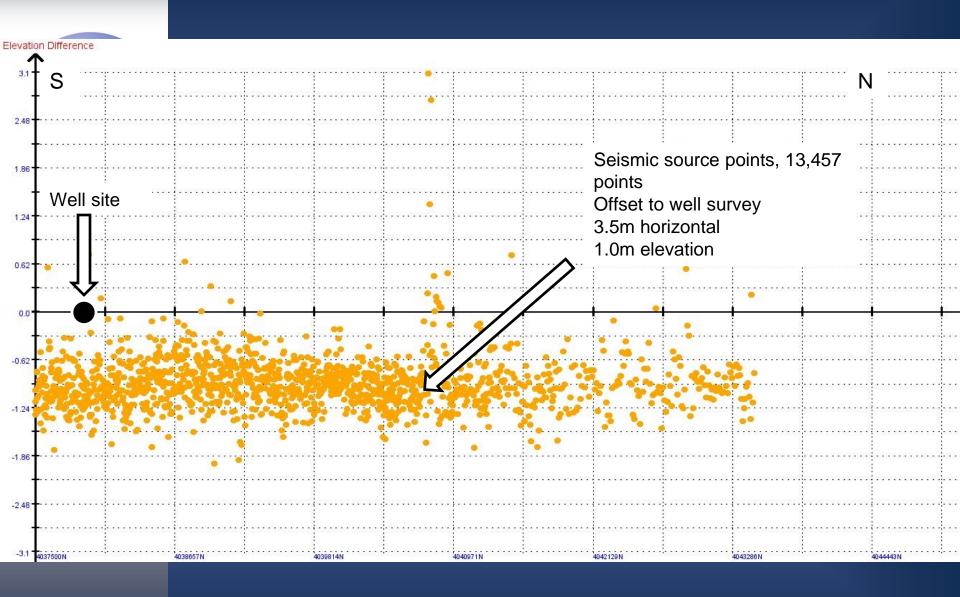
Future program to compare this to low cost GPS surveying instrument.

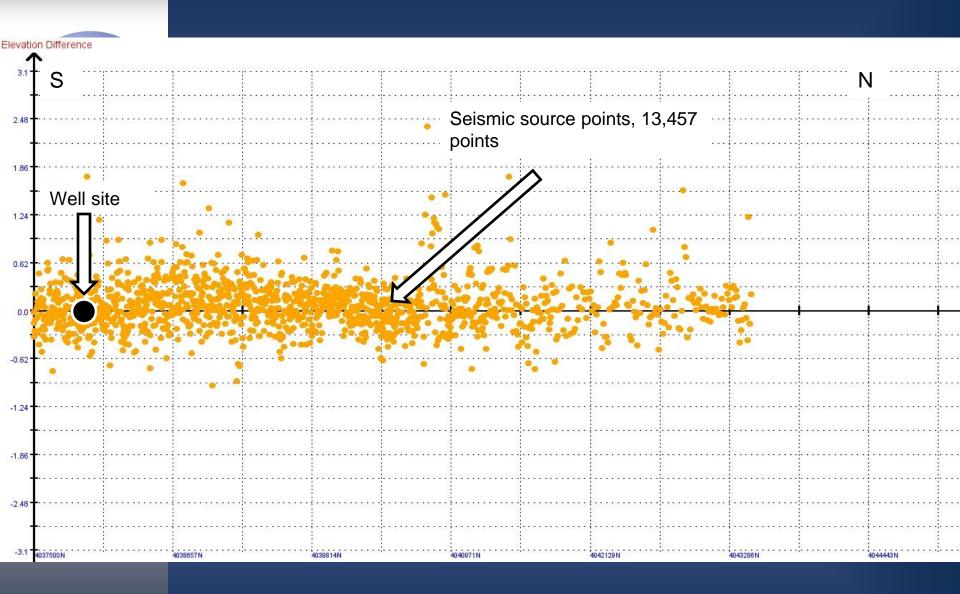


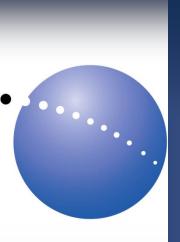

Continential USA project

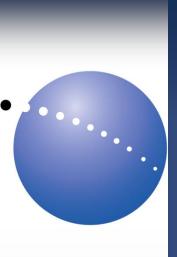

- 760 well sites in continental USA.
- Survey dates ranging from 1940's through to 2015.
- Spread over a large area.
- Less than \$70 per well.
- Approx 1 month.

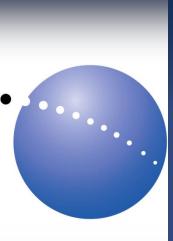



Reconciling multiple data sets





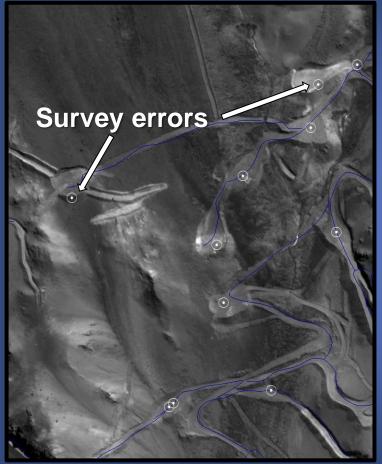




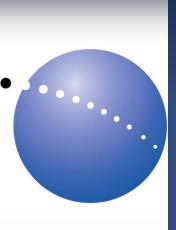
Drill collar location examples from Mining applications

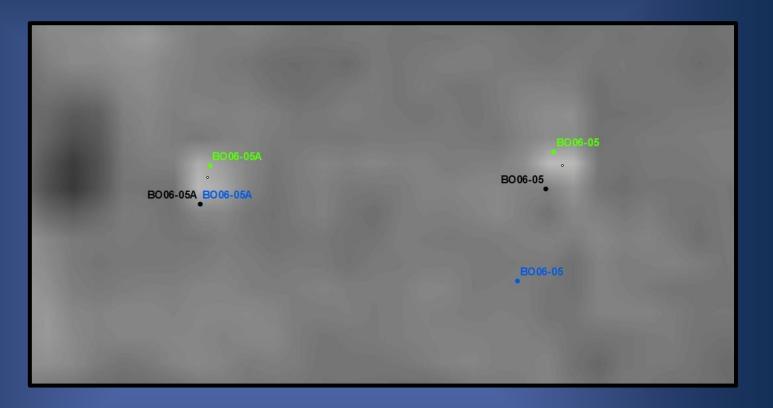
750 Drill holes surveyed by three different survey contractors


Drill hole collar locations determined directly from stereo satellite mapping

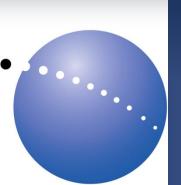

Drill hole collar
40cm x 40cm white
concrete block

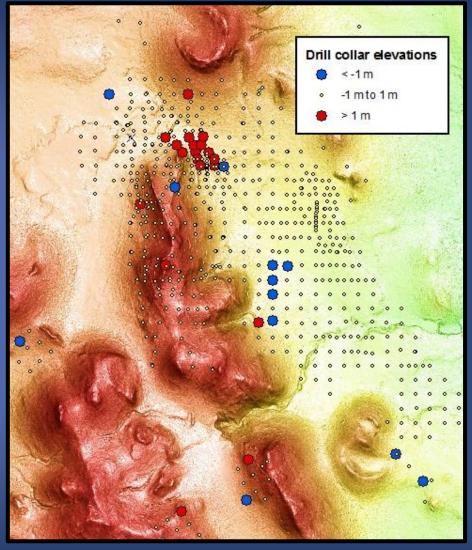
White drill hole collar blocks on WV precision ortho

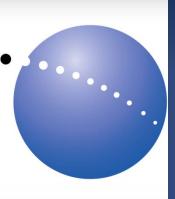

Drill hole collar location errors identified with satellite mapping

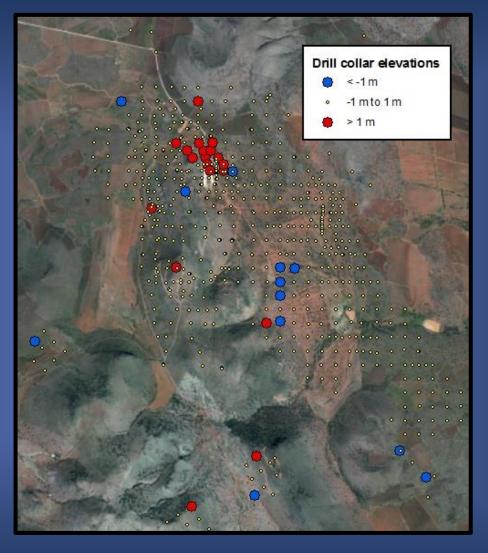


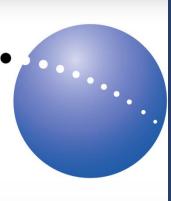
Drill holes on WV1 photo



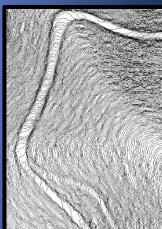

Drill holes on WV2 DEM

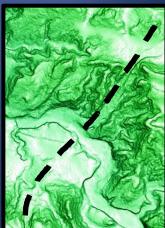


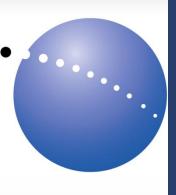

40cm x 40cm white concrete blocks on satellite photo and the coordinates from the three GPS surveys.


Drill hole collar elevation differences between the GPS survey and the stereo satellite mapping

Drill hole collar elevation differences between the GPS survey and the stereo satellite mapping


Other uses for Satellite surveying


- Pipeline route surveying
- Access roads and facilities
- Geological targeting
- Seismic safety



Conclusions

- Satellite surveying has improved to a level where it may be used as an alternative to ground surveying or airborne LiDAR for onshore oil and gas projects.
- Satellite surveying is useful for detecting and correcting gross survey errors.
- Uncertainty in surveying causes delays in many phases of oil and gas projects. A study of a typical onshore project shows that higher accuracy surveying earlier in the project greatly reduces delays.