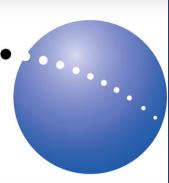
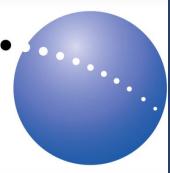


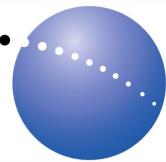
Satellite surveying


Presentation for ISCWSA

Over 550 global PhotoSat stereo satellite topographic mapping projects


Basic proposition

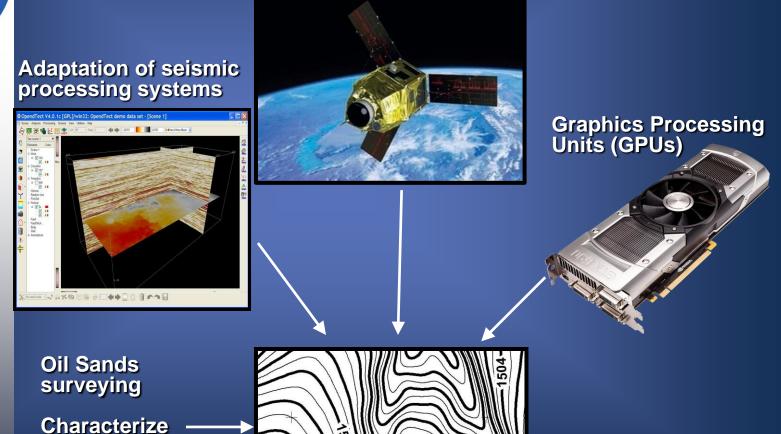
- Satellite surveying has improved to a level where it may be used as an alternative to ground surveying or airborne LiDAR for onshore oil and gas projects.
- Satellite surveying is useful for detecting and correcting gross survey errors.
- Uncertainty in surveying causes delays at many phases of oil and gas projects. A study of a typical onshore project shows that higher accuracy surveying earlier in the project greatly reduces delays.



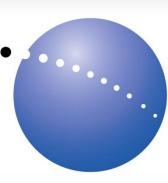
Agenda

- Introduction to Satellite surveying
- Validating accuracy
- Real world examples
- Evaluating the value of surveying

Introduction to satellite surveying technology



the satellites


and optimize the process

Four key technical components enabling elevation mapping from space

High resolution stereo satellite photos

1500

PhotoSat Algorithms

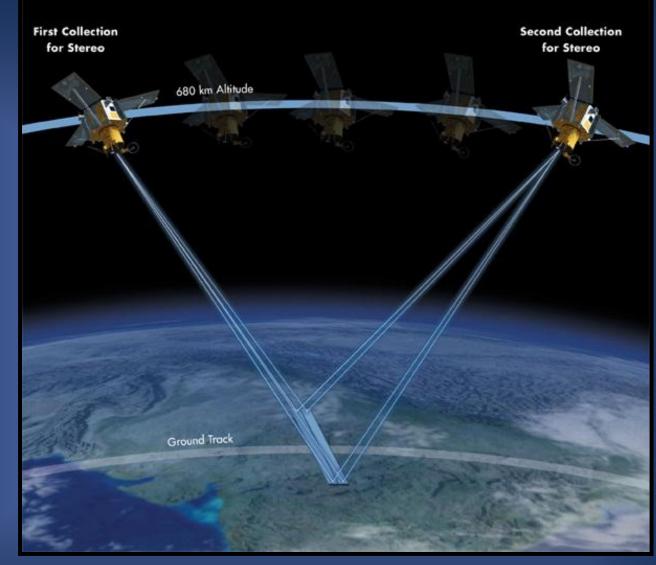
Based on Seismic algorithms

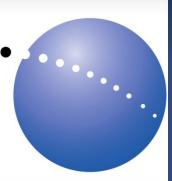
Achieve 4x better accuracy when compared to conventional photogrammetric algorithms

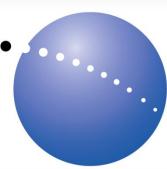
No image warping

۲

- Can assess accuracy compared to ground control
- Consistent throughout the area


"Experience database" can be incorporated


- Ft McMurray and other projects have allowed us to identify systematic errors.

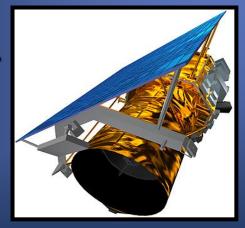

Ideal for GPU processing

- 20x better throughput
- Allows iteration during QC

Stereo satellite photos used to map topography

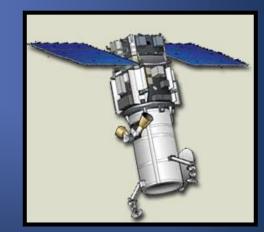
High resolution stereo satellites

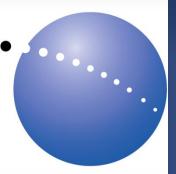
6 6 1


atel

1p

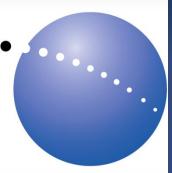

DigitalGlobe Stereo

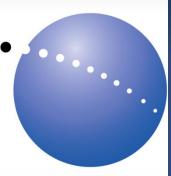

IKONOS 1m colour 2004


GeoEye-1 50cm colour 2009

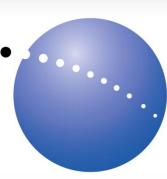
WorldView-1 50cm greyscale 2008

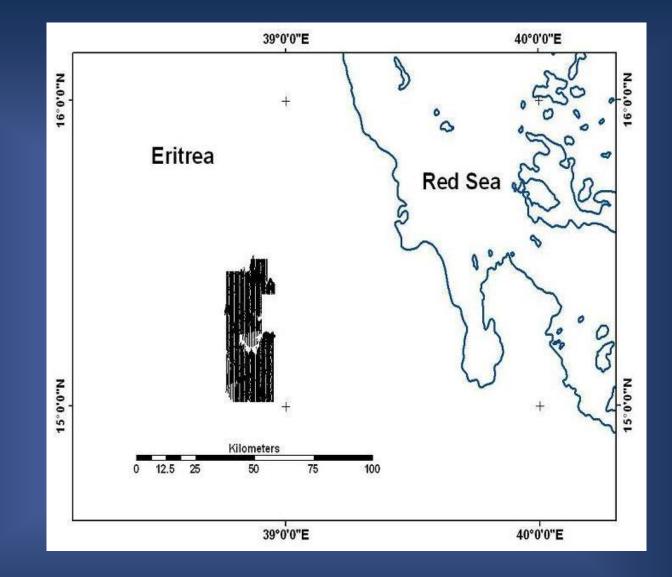
WorldView-2 50cm colour 2010 WorldView-3 30cm colour Aug 2014

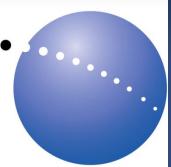

High resolution stereo satellites

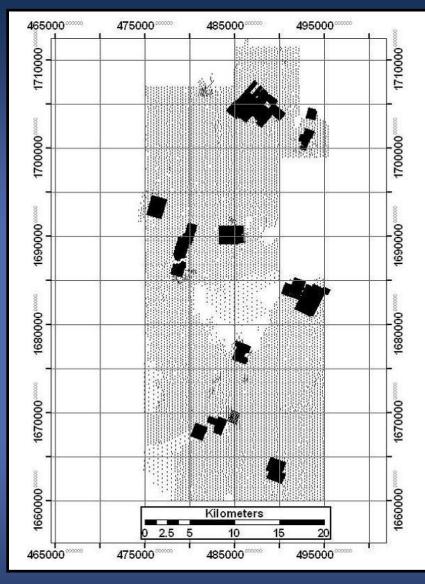

ASTRIUM Pleiades 1B February 2013

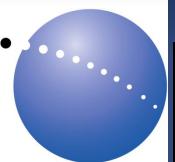
Graphic Processing Units (GPUs)


3,072 parallel processors 4 gigabytes RAM 4 teraflop C program compiler

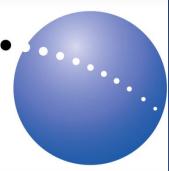

GPUs perform numerical processing up to 1000 times faster than CPUs. This enables us to do the hundreds of millions of 2D Fourier transforms necessary to automatically produce 1m Digital Surface Models from stereo satellite photos in reasonable times.


Testing the accuracy

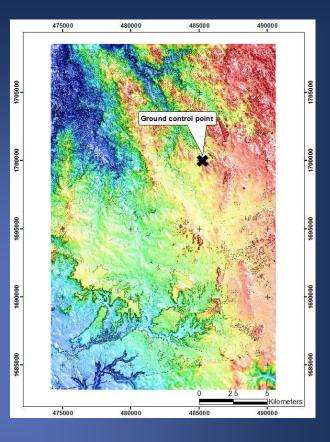

- Two examples:
 - Comparison to DGPS ground survey points 45,000 ground points in Eritrea
 - Comparison to airborne LiDAR
 Garlock Fault USA NCALM data
- US National Digital Elevation Program (NDEP)
 Choice of elevation check points
- USGS

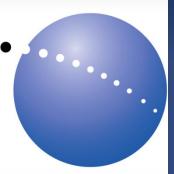


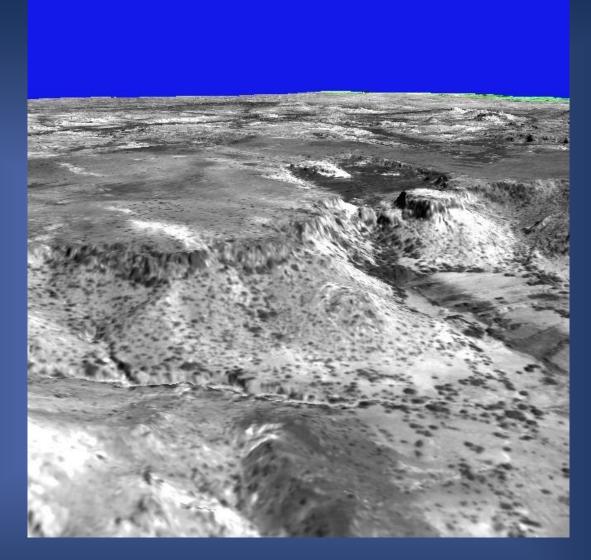
45,000 ground survey points in Asmara, Eritrea provided by Sunridge Gold.

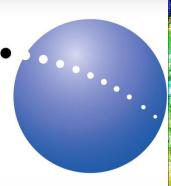


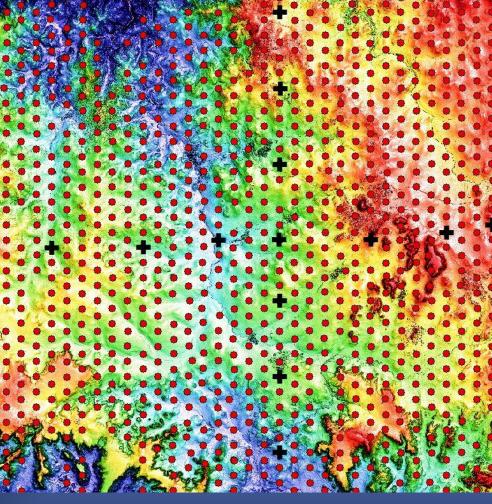
45,000 ground survey points in Asmara, Eritrea provided by Sunridge Gold.

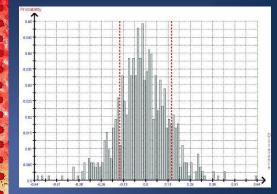



MWH Geophysics Survey Crew.

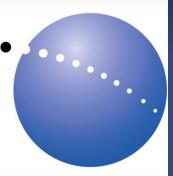




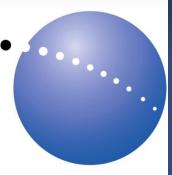

WorldView-2 DEM 100 km² Stereo WorldView-2 Asmara, Eritrea, June 2014

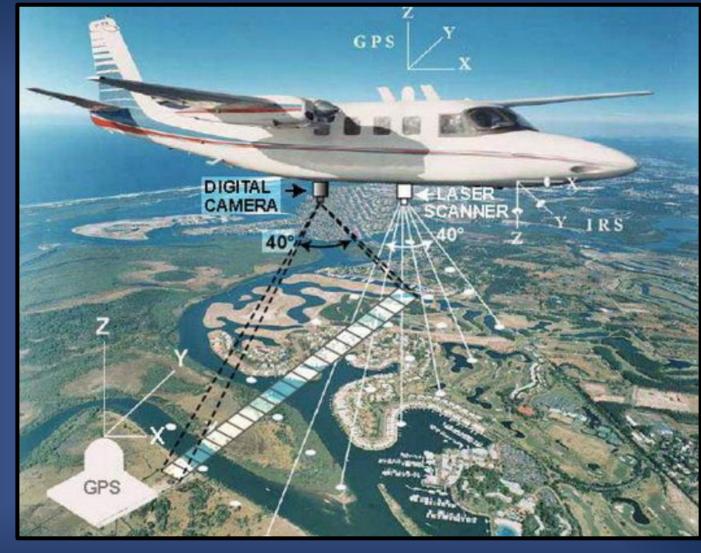


3D Ortho view

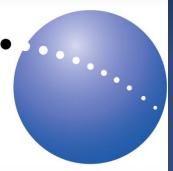


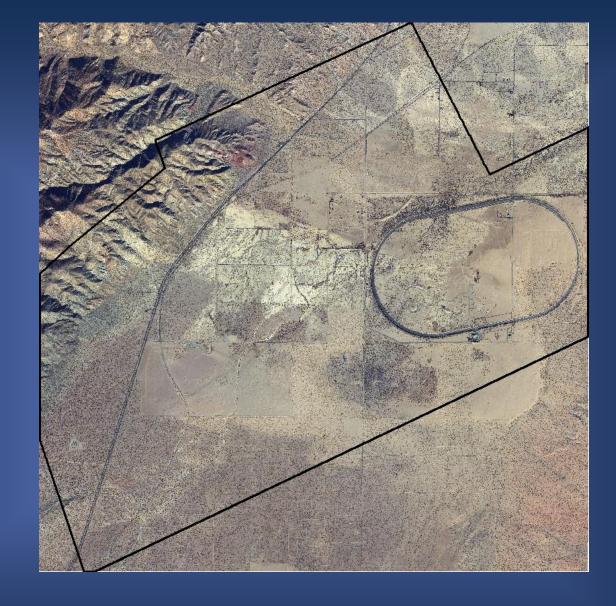
RMSE 15cm

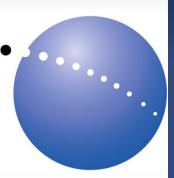

10km x 10km area 14 ground control points 731 check points

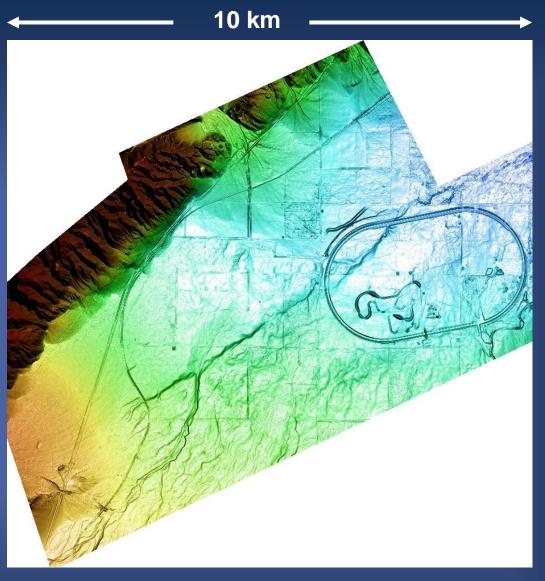


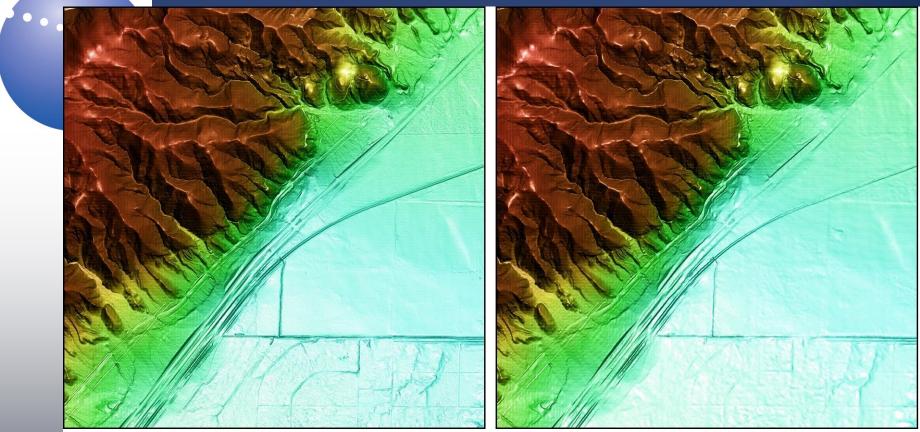
PhotoSat accuracy study



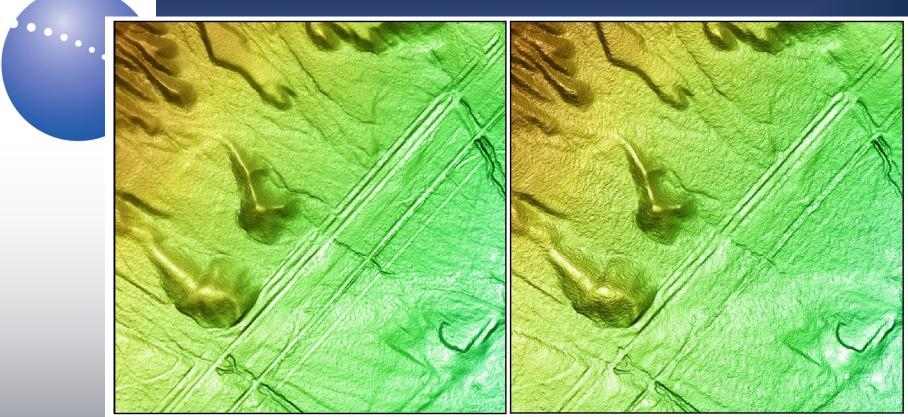

Location area of Open Topography LiDAR DEM. Garlock Fault, California.




LiDAR mapping from aircraft



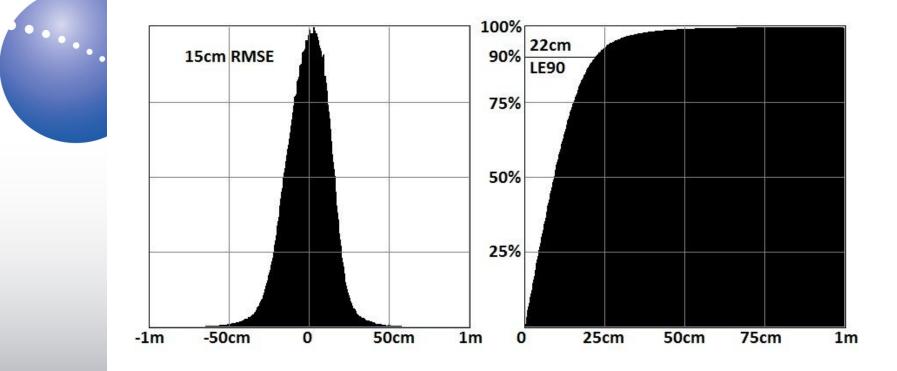
WV 3 stereo satellite photo


Open Topography LiDAR DTM. 5cm accuracy.

LiDAR Elevation Grid

Stereo WV3 Elevation Grid

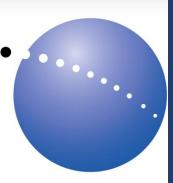
2.5km width CSH – Lidar vs PhotoSat

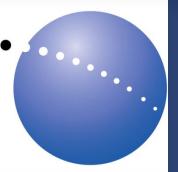

LiDAR Elevation Grid

•

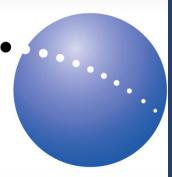
Stereo WV3 Elevation Grid

500m width CSH – Lidar vs PhotoSat


Garlock Fault, California


•

Elevation differences between the PhotoSat WV3 and LiDAR topography.

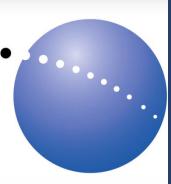

(in unchanged areas and slopes <20% grade) If we assume that the LiDAR is perfect then the RMS Linear error is less than 22cm

Examples of real world projects SADG Oil well heads – Alberta Tobkana block, Kurdistan, Talisman Energy Reconciling multiple surveys – Oil major – Kurdistan Drillcollar mapping - Mexico

Pilot Program SAGD well site in Alberta

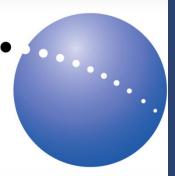
Case study – SAGD well site in Alberta

Pilot program for Producing SAGD well site In Alberta Canada


Project started Jan 30th 2015

Satellite images acquired February 4th 2015

Processing complete February 6th 2015



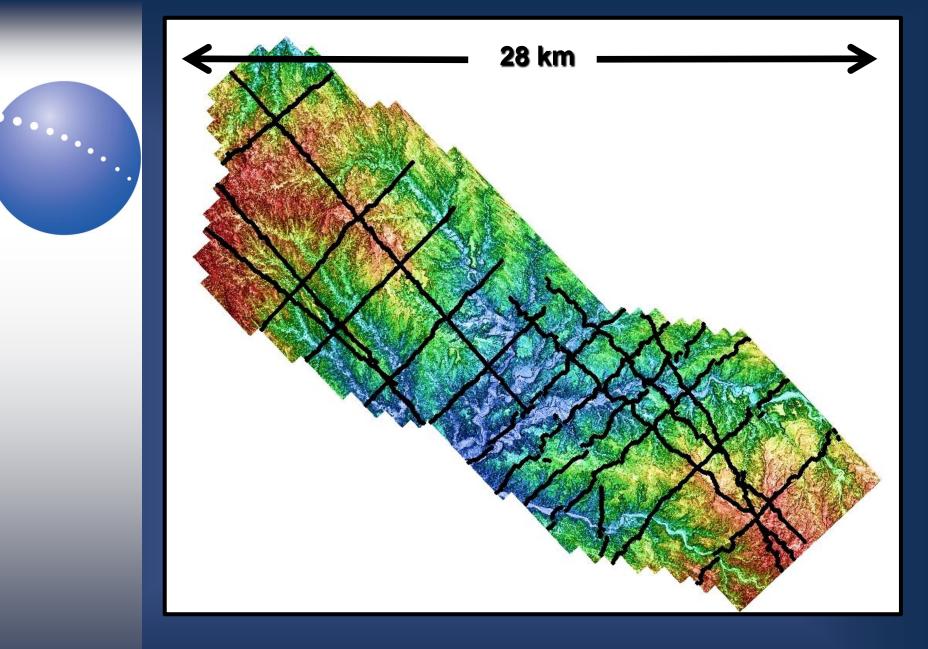
SAGD well site in Alberta

- Deliverables
 - 100 sq km of satellite image data + orthophoto.
 - Location of 70 well heads (excel + vectors)
 - 1m elevation grid over well pad areas
 - 50 cm contours
 - Colour elevation image
 - \$12k USD
- Well head locations compared to Government of Alberta certified RTK surveying – RMSE 11cm.
- Future program to compare this to low cost GPS surveying instrument.

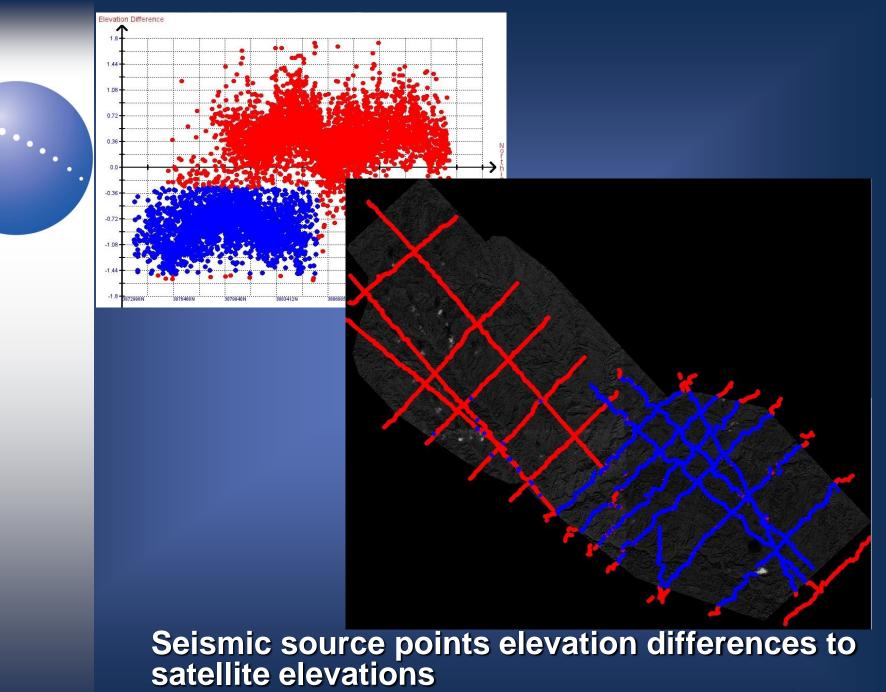
Tobkana and Kurdamir Blocks

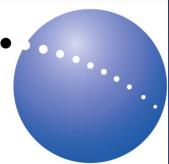
Talisman Western Zagros

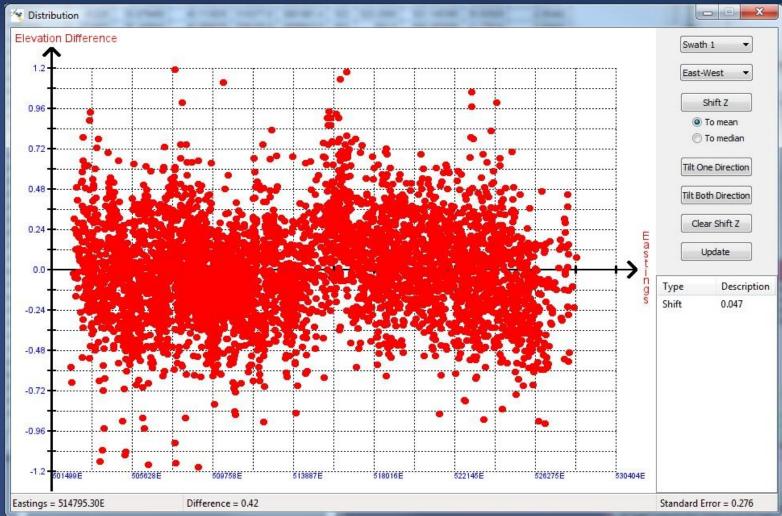
Seismic planning and point correction


Stereo Satellite Topographic Mapping Tobkhana & Kurdamir Blocks

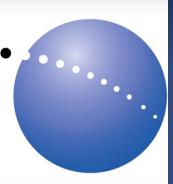
Talisman, WesternZagros

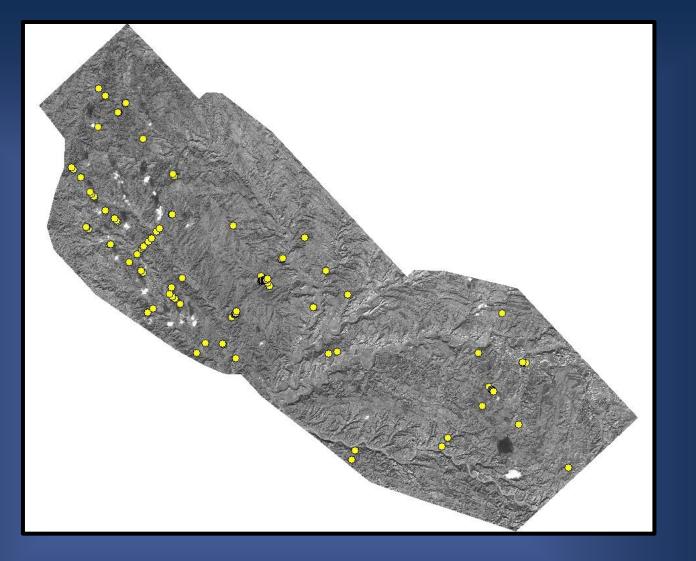

28 km⁻ PhotoSat[®] Highly Accurate Elevation Mapping from Space www.photosat.ca

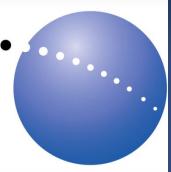

satellite topographic grid



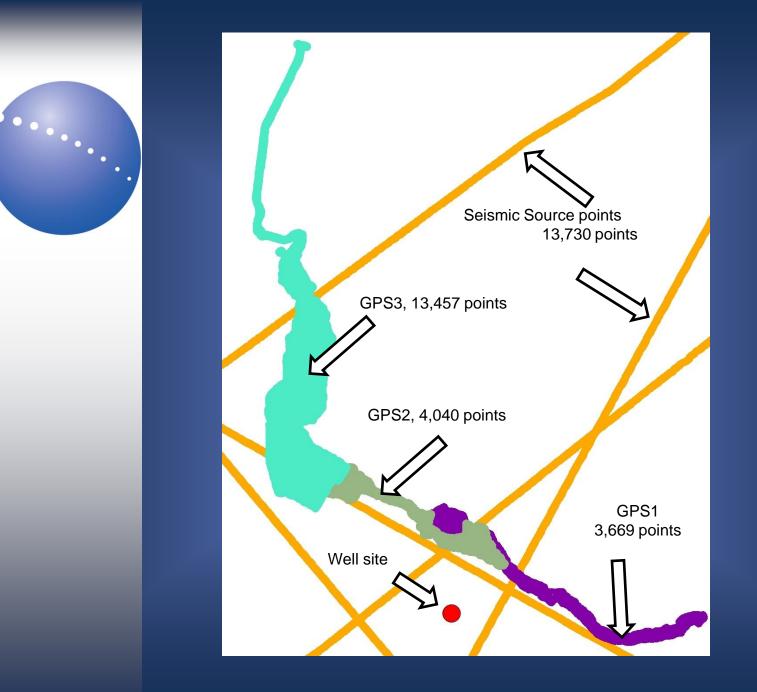
•

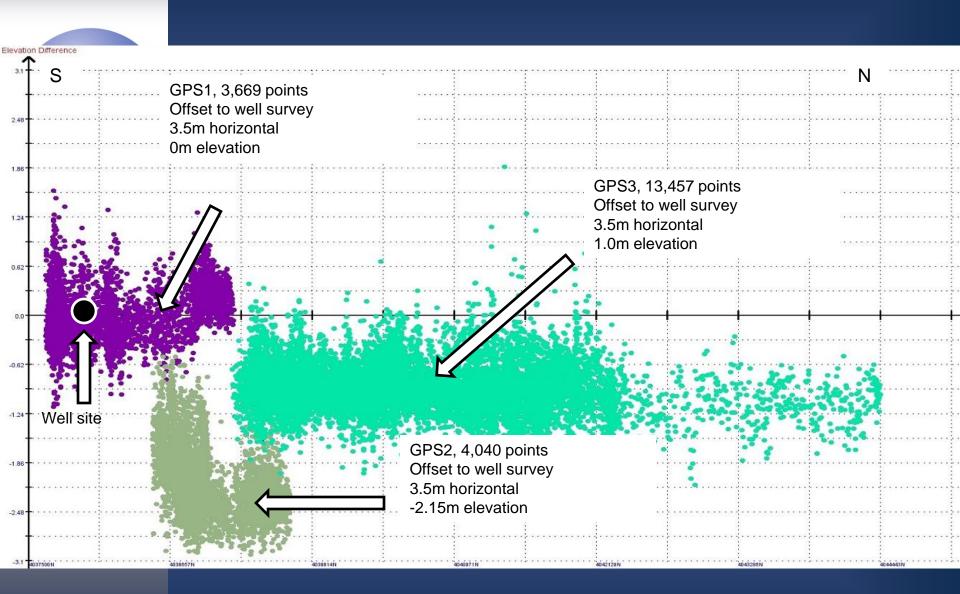

2D seismic source points

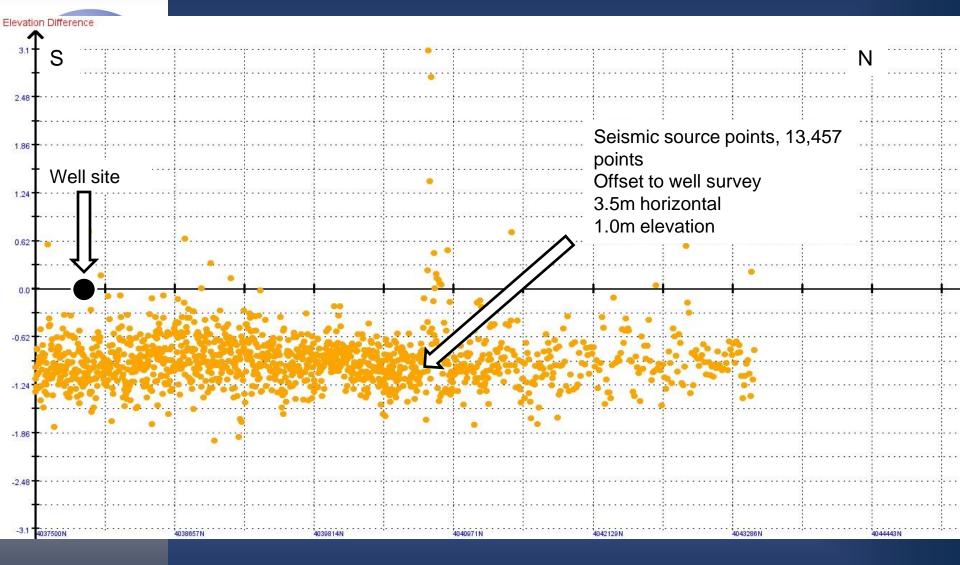


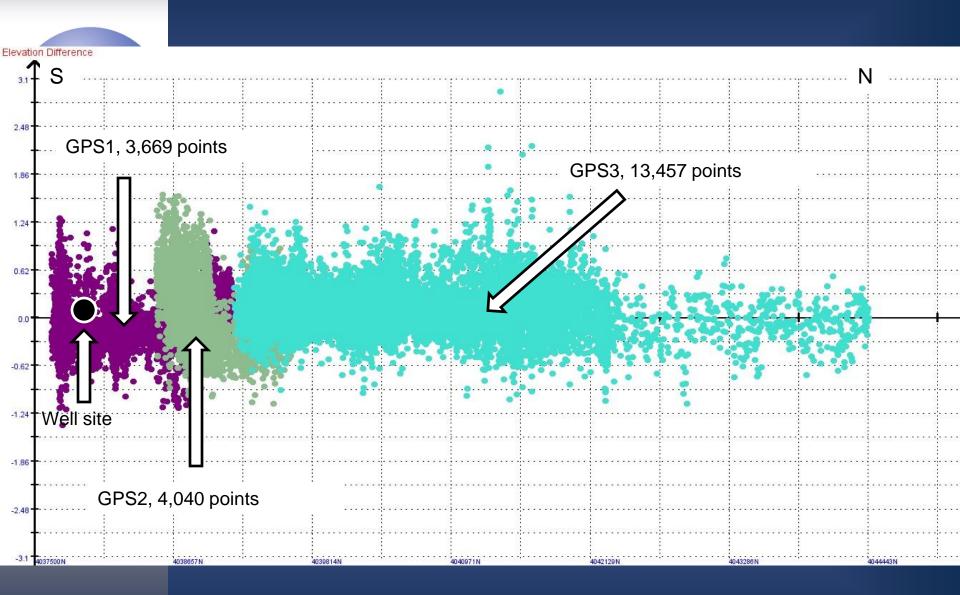


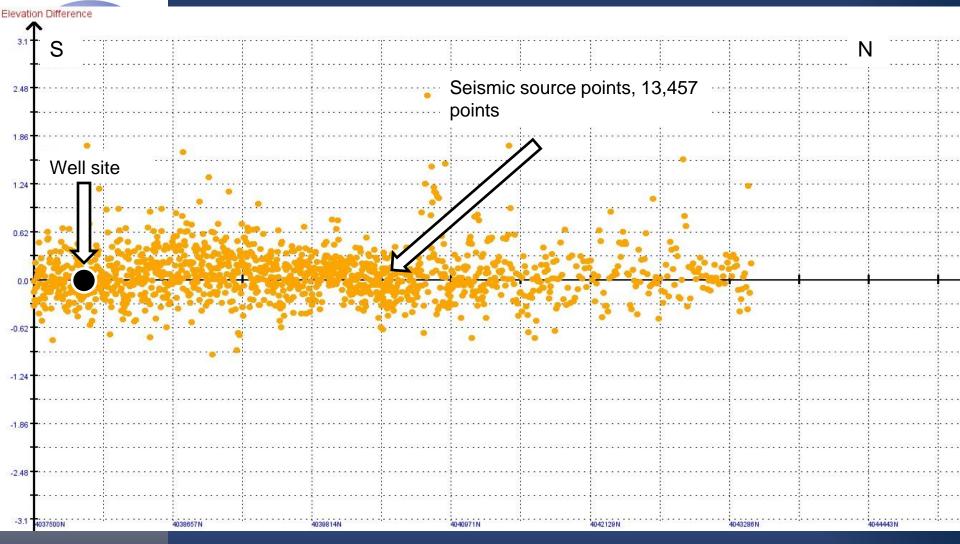
Kurdistan seismic source points differences to satellite elevations, SE points raised 1.3m Standard deviation 28cm.

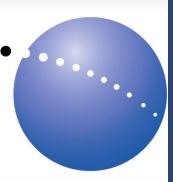


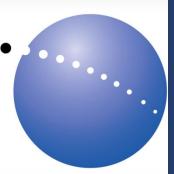

107 seismic source points with greater than 1m elevation difference to satellite elevations. These are probably survey errors due to too few GPS satellites in range. These source point elevations should be replaced by the stereo satellite elevations.



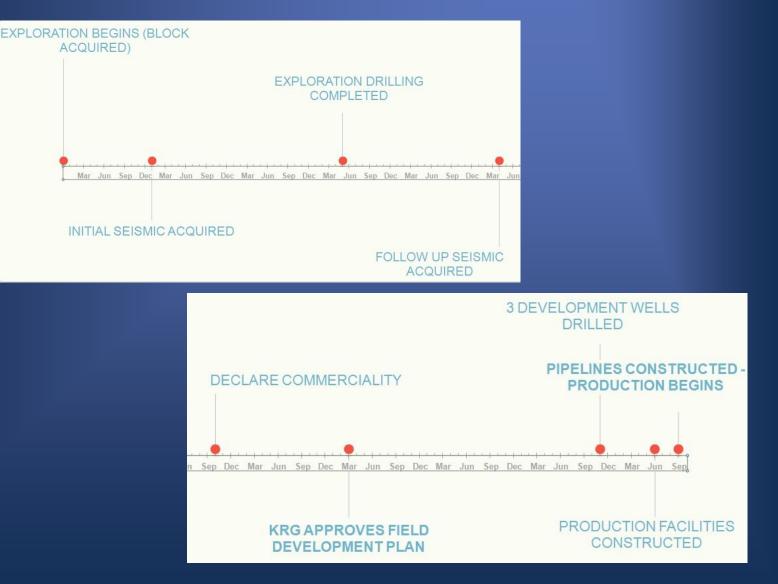

Reconciling multiple data sets


•

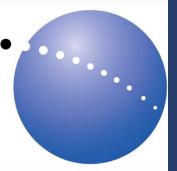



Assessing the impact of Surveying delays on Oil and Gas projects

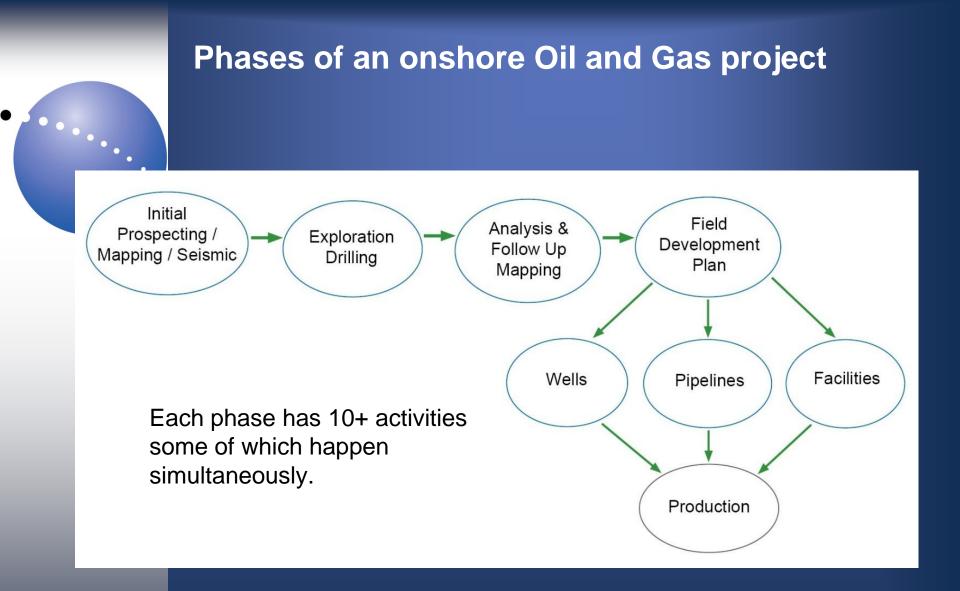
Most engineers agree that having accurate topographic survey data early in an Oil and Gas project reduces delays through-out the project.


Despite this most projects commission multiple surveys with increasing levels of accuracy through-out the project life.

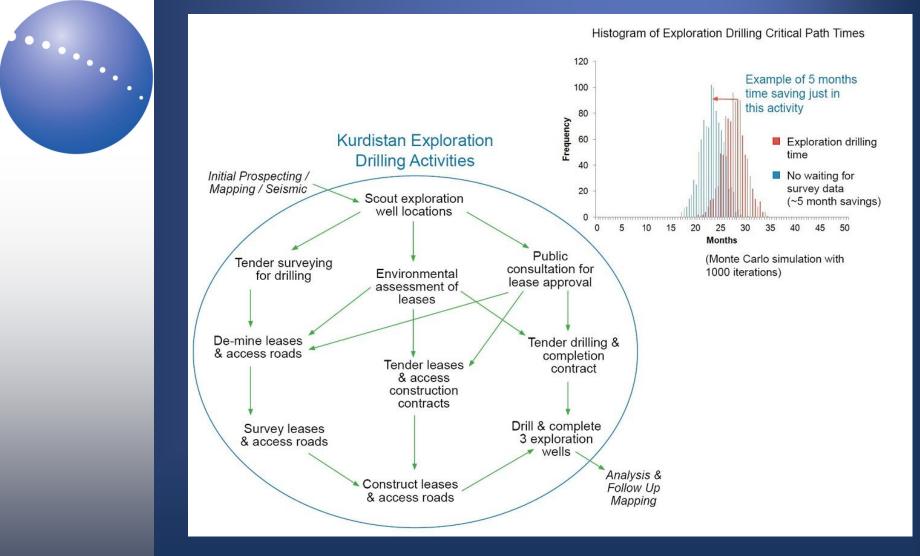
PhotoSat has commissioned the development of a critical path model of a typical Oil and Gas project with the objective of quantifying delays caused by the "multiple survey" approach.


This model was calibrated using actual client data for projects in Kurdistan.

Timeline for Kurdistan onshore Oil and Gas project

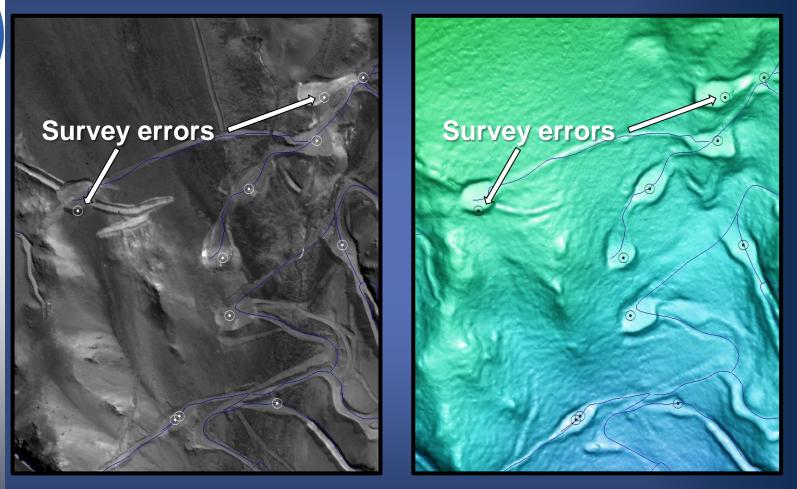

Detailed model

e 🦪 e	ormat Painter 🖪 I 🗓 - 🔛 - 🛆 - 🚣 - 🔳 🗮 🔳	律律国	Merge & Cent	er s	- %	• 360 300		ional Form	nat as Per	riod Hea	d Pe	eriod H	ig	Project	Head	-	Insert De	elete F	ormat	4	2 Clea	ar +			Find	
Clipbo	ard Ta Font Ta	Alignment		6	Numb	er 5	Contraction of the second	ing the	onen h		Styles						С	ells				F	diting			
A1	✓	view: Kurdis	tan Oil and	Gas Proj	ect		A																			
A	в	С	D	E	F	G	н		J	К	L	M	N	0	P	0	B	S 1	r u	VV	N X	YZ	AA	AB /	AC A	DAE
		Program Ev	aluation ar	nd Revi	ew: Ku	rdistan Oi	and Ga	s Projec	t								1				-	1.1			-	
					= Mont												•									
			1	Without	Improve	ment Step									1		Activity	A E	3 C	DF	E F	GF	11	J	κι	. M
Activity	Description	Precedent	Quality Improvement t Precedent Opportunity		Most Likely Time	Pessimisti c Time	Expecte d Time	Variance	Std. Dev	Earliest Start	Earliest Finish	Latest Start	Latest Finish	Slack	Mean	Std Dev	Mean Stri Dev								1.3 #*	
A	Acquire Block			1	2		2.167	0.25	0.50	0	2	0	2	0	2.2	0.5	Std Dev					3.3 1.			20 1	8 88
ŝ	Tender De-Mining and Surveying for Seismic Area	۵		1	2	7	2.167	0.25	0.50	2	4	2	4	0	2.2	0.5	2					3.0 2.			24 2	7 19
č	De-Mine Seismic Area	B		1	2	3	2.000	0.25	0.33	Å	6	4	- 4 C	0	2.0	0.4	2					3.0 2.				
Ď	Survey Seismic Area for Acquisition	C		0.5	1	2	1.083	0.06	0.35	6	7	6	7	0	11	0.4	4					4.7 2.				
F	Tender Seismic Acquisition	A	D	2	4	6	4.000	0.44	0.67	2	6	3	7	1	4.0	0.5	5					2.3 1				
F	Acquire Seismic Data	DE	2	2	3	6	3.333	0.44	0.67	7	10	7	10	0	3.3	0.7	6					2.0 2				
G	Tender Seismic Processing	A	F	1	3	6	3 167	0.69	0.83	2	5	7	10	5	3.2	0.8	7					3.6 2.				
H	Process Seismic Data	F.G		1	2	3	2.000	0.11	0.33	10	12	10	12	0	2.0	0.3	8					2.5 2.				
	Scout Exploration Well Location(s) (May Require De-Mining)	н		3	5	7	5.000	0.44	0.67	12	17	12	17	0	5.0	0.7	9					3.2 1.5				
j.	Conduct Environmental Assessment of Lease(s) (May Require De-Mining)	1		1	2	3	2.000	0.11	0.33	17	19	18	20	1	2.0	0.3	10					3.4 1.7				
К	Conduct Public Consultation for Lease Approval(s)	1		2	3	12	4.333	2.78	1.67	17	20	17	20	0	4.3	17	11	2.6 1	8 23	0.8 3	0 3.7	1.7 2.	2 4.1	2.0	3.1 1/	5 2.4
L	Tender De-Mining and Surveying for Driling	1		1	2	4	2.167	0.25	0.50	17	19	18	20	1	2.2	0.5	12	2.2 1	2 21	14 4	.2 3.6	2.2 2.	3 5.2	21 :	2.3 1.	3 2.2
M	De-Mine Lease(s) and Access Road(s)	J.K.L		1	2	3	2.000	0.11	0.33	20	22	20	22	0	2.0	0.3	13	2.8 1	7 15	12 3	.9 3.8	3.3 2.	3 3.7	12 /	6.2 1	4 2.3
N	Survey Lease(s) and Access Road(s)	M		0.5	1	2	1.083	0.06	0.25	22	23	22	23	0	11	0.2	14	1.6 1.	7 19	10 4	.6 4.0	2.6 1.1	8 4.5	17 :	2.9 2.	.2 2.5
0	Tender Lease and Access Construction Contract(s)	J,K	N	2	3	6	3.333	0.44	0.67	20	23	20	23	0	3.4	0.7	15	1.8 1.	6 1.8	0.9 3	.9 4.5	2.1 1.	7 5.4	21 6	4.2 1.	9 2.6
P	Construct Lease(s) and Access Road(s)	N,O		4	6	8	6.000	0.44	0.67	23	29	23	29	0	6.0	0.7	16	1.9 1.	9 1.9	0.9 5	3 3.4	3.6 2.	4 5.5	22 /	4.3 2.	4 15
Q	Tender Drilling & Completion Contract	J,K	N	2	4	6	4.000	0.44	0.67	20	24	25	29	5	4.0	0.6	17	2.4 2	6 2.3	14 4	.6 3.2	2.3 1.3	3 5.0	17	4.1 2.	.3 2.2
	Drill & Complete 3 Exploration Wells	P,Q		6	9	12	9.000	1.00	1.00	29	38	29	38	0	9.0	1.0	18					3.4 1.8				
S	Analyze Results and Plan Follow Up Seismic	R		4	8	12	8.000	1.78	1.33	38	46	38	46	0	8.0	1.4	19					2.8 2.				
Т	Tender De-Mining and Surveying for Seismic	S		1	2	4	2.167	0.25	0.50	46	48	46	48	0	2.2	0.5	20					2.0 2.0				
	De-Mine Seismic Area	Т		2	3	4	3.000	0.11	0.33	48	51	48	51	0	3.0	0.3	21					4.1 1.7				
V	Survey Seismic Area	U		1	2	4	2.167	0.25	0.50	51	53	51	53	0	2.1	0.5	22					3.9 1.5				
W	Tender Seismic Data Acquisition	S	V	1	3	6	3.167	0.69	0.83	46	49	50	53	4	3.2	0.9	23					4.2 2.1				
×	Acquire Seismic Data	V,W		2	4	8	4.333	1.00	1.00	53	57	53	57	0	4.3	1.0	24					3.3 2.				
Y	Tender Seismic Processing	S	×	1	3	6	3.167	0.69	0.83	46	49	54	57	8	3.1	0.8	25					4.2 2.1				
Z	Process Seismic Data	XY		2	3	4	3.000	0.11	0.33	57	60	57	60	0	3.0	0.3	26					3.6 2.				
AA	Analyze Results and Declare Commerciality Scout Development Well and Facility Locations (May Required De-Mining)	Z		4	ь	12	6.667	1.78	1.33	60 66	66 72	60 66	66 72	0	6.6	1.3	27					4.0 1.1				
AB		AA		3	6	12	6.500	2.25	150		72	72	72	0	6.5	15	28					2.6 1.9				
AC AD	Public Consultation of Well and Facility Locations Environmental Assessment of Well and Facility Locations	AB		4	6	12	3.000	0.11	1.33	72 72	78	72	78	0	3.0	1.3	29	2.4 2				3.4 2.				
	Field Development Plan Approval by KRG	AA.AC.AD		2	3	4	3.000	0.69	0.33	72	/5	75	81	3	3.0	0.3	30					2.8 2.				
AE	Tender Contracts for De-Mining and Surveying for Development Drilling	AA,AL,AD		2	3	6	4.000	0.63	0.67	81	85	90	94	9	4.0	0.9	31					3.2 2.			65 2	
	De-Mine Drilling Leases and Access Roads	AE		4		12	8.000	178	1.33	85	93	94	102	0	8.0	13	32					3.7 18				
AG	Survey Drilling Leases and Access Roads	AF		4	0	6	4.000	0.44	0.67	93	93	94	102	9	4.0	0.7	33					4.0 2				
ΔI	Tender Contracts for Lease and Access Construction	AG	AH	2	4	6	4.000	0.44	0.67	93	97	102	106	21	4.0	0.7	34					4.0 2.				
	Construct Drilling Leases and Access Roads	AHAI	AL	4	9	12	8.000	178	1.33	97	105	102	114	9	4.0	14	36					2.4 1.				
	Tender Contract for Drilling & Completion	AF	AH	4	6	8	6.000	0.44	0.67	81	87	108	114	27	6.0	0.7	37	2.3 2								


50+ activities identified, calibrated using projects in Kurdistan 1000 iteration Monte Carlo analysis to include effect of random errors Does not include "catastrophic delays" caused by errors in data

Calculates delays – does not quantify these into \$

Exploration drilling critical path


•

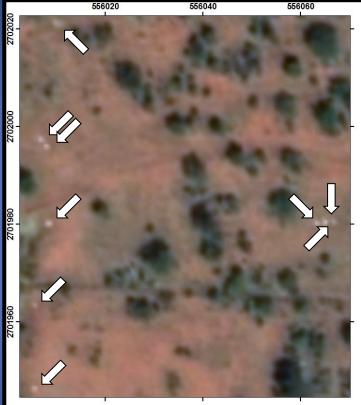
Drill collar location examples from Mining applications

Drill hole collar location errors identified with satellite mapping

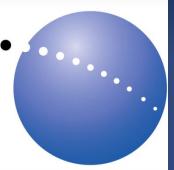
Drill holes on WV1 photo

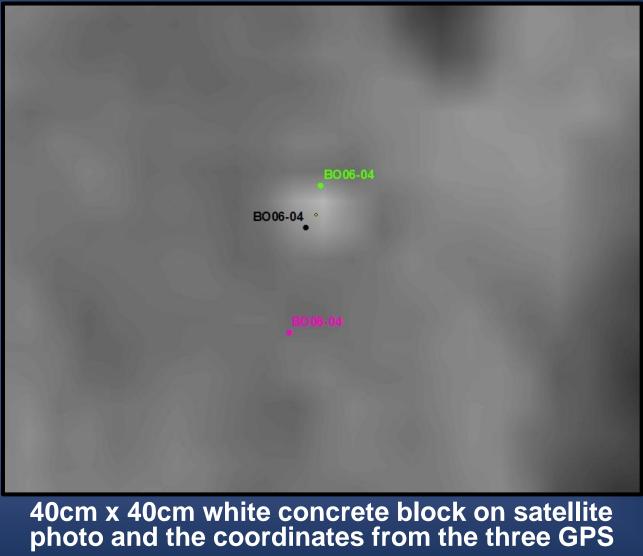
Drill holes on WV2 DEM

......

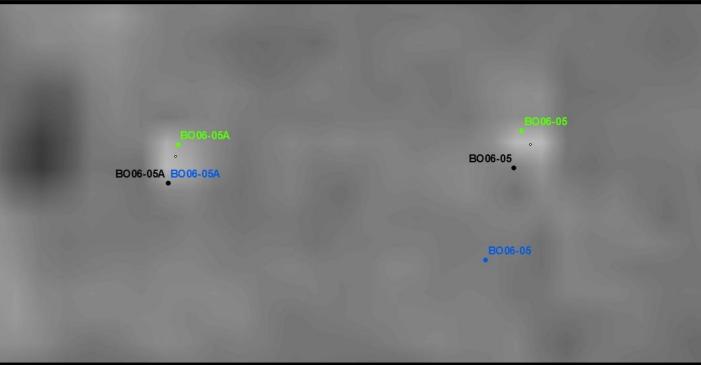


750 Drill holes surveyed by three different survey contractors

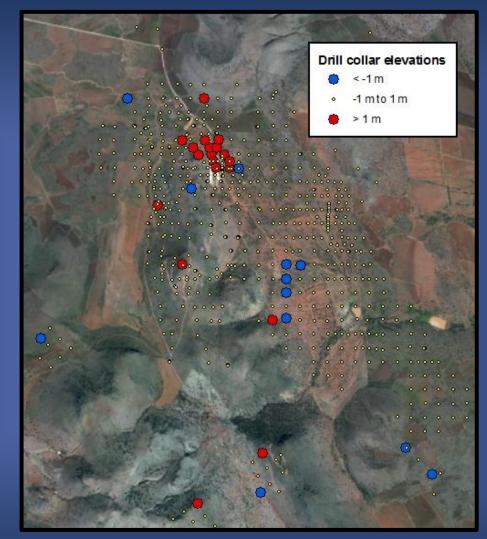

Drill hole collar locations determined directly from stereo satellite mapping



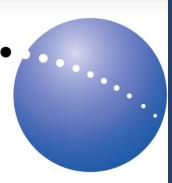
Drill hole collar 40cm x 40cm white concrete block


White drill hole collar blocks on WV precision ortho

surveys



40cm x 40cm white concrete blocks on satellite photo and the coordinates from the three GPS surveys.


Drill hole collar elevation differences between the GPS survey and the stereo satellite mapping

.....

•

Drill hole collar elevation differences between the GPS survey and the stereo satellite mapping

Conclusions

- Satellite surveying has improved to a level where it may be used as an alternative to ground surveying or airborne LiDAR for onshore oil and gas projects.
- Satellite surveying is useful for detecting and correcting gross survey errors.
- Uncertainty in surveying causes delays in many phases of oil and gas projects. A study of a typical onshore project shows that higher accuracy surveying earlier in the project greatly reduces delays.