Toes and crests, satellite image

Automatic toes & crests mapping at Suncor’s oil sands mine

In this article we’ll look at how the engineers at Suncor have adopted our toes and crests mapping as an integral part of their mine planning process. This is the last post in a 3 part Suncor case study series. In the first post, we discussed Suncor’s comparison of various survey methods, and in the second article we showed how they use satellite elevation mapping for monitoring mature fine tailings.

Mapping of toes and crests is important for monitoring open-pit mining. On the ground, vehicular access, overburden removal and bench integrity needs to be ascertained if the mine is to continue to be profitable and safe. But on the ground is the worst place for surveyors to be: survey teams that examine mine sites directly are exposed to hazards like falling debris and bench wall slumping as well as heavy vehicle traffic. Which is where PhotoSat comes in.

In collaboration with Suncor, PhotoSat has developed a process to automatically map toes and crests to an accuracy of 15cm without survey teams requiring access to hazardous areas of the mine site. Production isn’t interrupted, surveyors are working on tasks that actually require boots on the ground, and accurate mapping of toes and crests allows the engineers to monitor bench integrity and check mine progression against projections.

Toes and crests over a satellite photo

Toes and crests data draped over a satellite photo

 

Toes and crests over PhotoSat’s elevation image

Toes and crests data draped over PhotoSat’s elevation image

 

Bird’s eye view of toes and crests over a mine site

Bird’s eye view of toes and crests data over a mine site

 

Mine planning often takes place on a biweekly or monthly basis, reflecting production speed. We’re able to supply our oil sands clients with useable data within 5 days, meaning analysis of progress and erosion is more granular and data is available in a timely manner.

There are several mine surveying options on the market, many of which Suncor has tried (see our first post for Suncor’s comparison of various surveying methods). Typically these rely on LiDAR, which uses reflected laser light to build images. Terrestrial laser scanning involves survey teams setting up and using multiple scanning stations and consequently requires more time to produce images. And survey teams are still on the ground! Aerial LiDAR avoids this issue but results in huge point clouds that have to be processed before an image is usable, which can take a very long time. GPS survey equipment can also be used, but data paucity and safety remain serious issues.

Using satellites, Photosat offers instantaneous snapshots of all mine site toes and crests derived from our elevation grids. Our proprietary geophysical processing system results in far greater accuracy than conventional satellite mapping processes such as photogrammetry.

Oil sands mines change fast and digital vector data for toes and crests are vital to the engineers for keeping track of what is usually softer rock. Suncor switched over to using PhotoSat’s satellite topography as their main survey method in 2013. While some areas of the mine still use GPS surveying, toe and crest mapping has been carried out exclusively by PhotoSat.

Our elevation mapping is also used for other applications at oil sands and hard rock mines, such as:

  • Sloughing in nonactive areas
  • Pipelines and roads
  • Power poles
  • Buildings and structures
  • In-pit geotech surveying
  • Correcting LiDAR issues

For more information on satellite elevation mapping and toes and crests, feel free to contact us at info@photosat.ca or 604-681-9770.